Acta Crystallographica Section C

## Crystal Structure

Communications
ISSN 0108-2701

# Sodium pyridine-3-carboxylate 

Craig M. Forsyth, Pamela M. Dean* and Douglas R. MacFarlane

Department of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
Correspondence e-mail: pamela.dean@sci.monash.edu.au
Received 16 February 2007
Accepted 1 March 2007
Online 31 March 2007
The title compound, also known as sodium nicotinate, $\mathrm{Na}^{+} . \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}{ }^{-}$, consists of two unique Na atoms coordinated to two unique pyridine-3-carboxylate ligands through the N atoms and carboxylate groups. One Na atom and one pyridine-3-carboxylate ligand lie on a twofold axis. Extensive Na coordination results in a three-dimensional array comprising infinite $\mathrm{NaO}_{2} \mathrm{CR}$ chains linked by intrachain $\mathrm{Na}-\mathrm{N}$ bonds.

## Comment

The title compound, (I), is used as a precursor in therapeutic formulations, because its progenitor nicotinic acid, commonly known as the B -vitamin niacin, is a necessary component of human nutrition (Prinzo \& Benoist, 2002; O’Neil, 2006). In addition, the achievement and elucidation of pyridinecarboxylate coordination complexes has been the focus of supramolecular and coordination complex research (Huang et al., 2005; Batten \& Harris, 2001). Pyridinecarboxylate ligands display versatile coordinating modes owing to the presence of two carboxylate O atoms as well as the pyridine N -atom donor. Surprisingly, the structural elucidation of anhydrous sodium nicotinate has not been reported until now. In the present report, the structural determination and analysis of (I) is described.

(I)

Compound (I) (Fig. 1) has two distinct Na-nicotinate units, with one disposed about a twofold axis, with the unique position refined as $50 \% \mathrm{~N} 2$ and $50 \% \mathrm{C} 10$. The extended structure (Fig. 2) consists of infinite two-dimensional chains of Na and O atoms, lying parallel to the $c$ axis, each surrounded by the pyridyl groups of the pendant nicotinate ligands. The individual chains are periodically linked by $\mathrm{Na}-\mathrm{N}$ bonds from the pyridyl groups of neighbouring chains. Each Na atom is six-coordinate, with Na 1 bound to six O atoms and Na 2 bound
to five O and one N atom. The coordination geometry of both Na 1 and Na 2 is approximately trigonal prismatic, distorted from a regular polyhedron by the acute bite angles [48.12 (3) and $53.62(4)^{\circ}$ ] of the nicotinate ligands, which each lie along one of the edges between the trigonal planes. The twodimensional chains are built up from repeat units of three edge-shared trigonal prisms derived from $\mathrm{Na} 2 / \mathrm{Na} 1 / \mathrm{Na} 2$, which are subsequently inverted and translated to form successive components of each two-dimensional chain (Fig. 3).

The two unique nicotinate ligands display differing coordination modes (see scheme at end of Comment). Ligand 1 ( $\mathrm{O} 1 / \mathrm{O} 2 / \mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 6$ ) chelates to Na 1 and is $\mu_{5}$-bridging to four other Na atoms. Thus, atom O 1 is bound to $\mathrm{Na} 1, \mathrm{Na} 2$ and $\mathrm{Na} 2{ }^{\mathrm{ii}}$ [symmetry code: (ii) $x,-y, z+\frac{1}{2}$ ], whilst atom O 2 bridges between Na 2 and its symmetry equivalent $\mathrm{Na} 2^{\mathrm{v}}$ [symmetry code: (v) $\left.x,-y, z-\frac{1}{2}\right]$ (Table 1). Pyridyl atom N 1 also binds to an Na atom, $\mathrm{Na}{ }^{\text {iii }}$ [symmetry code: (iii) $-x-\frac{1}{2}, y+\frac{1}{2},-z-\frac{1}{2}$ ]. The second nicotinate ligand ( $\mathrm{O} 3 / \mathrm{N} 2 / \mathrm{C} 7-\mathrm{C} 10$ ) lies on the twofold axis and thus has a symmetrical environment, with O3 bridging $\mathrm{Na} 1, \mathrm{Na} 2$ and $\mathrm{Na} 1^{\mathrm{i}}$ [symmetry code: (i) $-x,-y,-z$ ]


The unique component and some symmetry-related atoms of $[\mathrm{Na} \text { (nicotinate) }]_{\infty}$, shown with $50 \%$ probability displacement ellipsoids and H atoms as spheres of arbitrary size. The second nicotinate group is shown with symmetry-equivalent atoms [symmetry code: (vi) $-x, y, \frac{1}{2}-z$ ] to complete the ligand, and only one component of the disordered $\mathrm{N} 2 /$ C10 position.


Figure 2
A ball-and-stick representation of the unit-cell contents of $[\mathrm{Na}$ (nicotinate) $]_{\infty}$, as viewed down the $c$ axis.


Figure 3
Schematic representation of the arrangement of the Na trigonal prisms within the infinite two-dimensional chains in $[\mathrm{Na} \text { (nicotinate) }]_{\infty}$.
(Table 1). The $\mathrm{Na}-\mathrm{O}$ bond distances are generally in the range 2.3352 (8) -2.4416 (9) A. However, one longer distance [ $\mathrm{Na} 2-\mathrm{O} 1=2.9577$ (10) Å] occurs, indicating unsymmetrical chelation of ligand 2 to Na 2 . This is typical of $\mathrm{NaO}_{2} \mathrm{CR}$ structures, in particular when the $\mathrm{RCO}_{2}^{-}$group is bridging. The $\mathrm{Na} 2-\mathrm{N} 1^{\text {iv }}$ [symmetry code: (iv) $-x-\frac{1}{2}, y-\frac{1}{2},-z-\frac{1}{2}$ ] (Table 1) distance is marginally longer than those for $\mathrm{Na}-\mathrm{O}$, as expected for a neutral donor interaction.



## Experimental

The title compound was obtained from the recrystallization of its impure industrial product. The crystal used for data collection was obtained by slow evaporation of an acetonitrile solution, at 298 K , over a period of seven days.

## Crystal data

$\mathrm{Na}^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}{ }^{-}$
$M_{r}=145.09$
Monoclinic, $C 2 / c$
$a=20.1983$ (7) $\AA$
$b=14.1880$ (5) $\AA$
$c=6.3000$ (2) $\AA$
$\beta=99.935$ (13) ${ }^{\circ}$

## Data collection

Bruker X8 APEX KappaCCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005)
$T_{\text {min }}=0.957, T_{\text {max }}=0.973$

Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
138 parameters
$w R\left(F^{2}\right)=0.084$
H -atom parameters constrained
$S=1.07$
2040 reflections
$\Delta \rho_{\text {max }}=0.42 \mathrm{e}_{\mathrm{\circ}} \AA^{-3}$
$\Delta \rho_{\min }=-0.23 \mathrm{e}^{-3}$

Table 1
Selected bond lengths ( $\AA$ ).

| $\mathrm{Na} 1-\mathrm{O} 1$ | $2.3352(8)$ | $\mathrm{Na} 2-\mathrm{O} 3$ | $2.3283(9)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Na} 1-\mathrm{O} 3^{\mathrm{i}}$ | $2.3898(8)$ | $\mathrm{Na} 2-\mathrm{O} 2$ | $2.3559(9)$ |
| $\mathrm{Na} 1-\mathrm{O} 3$ | $2.4636(9)$ | $\mathrm{Na} 2-\mathrm{N} 1^{\text {iv }}$ | $2.5450(10)$ |
| $\mathrm{O} 1-\mathrm{Na} 2^{\mathrm{ii}}$ | $2.4416(9)$ | $\mathrm{O} 2-\mathrm{Na} 2^{\mathrm{v}}$ | $2.3637(9)$ |
| $\mathrm{O} 1-\mathrm{Na} 2$ | $2.9577(10)$ | $\mathrm{O} 3-\mathrm{Na} 1^{\mathrm{i}}$ | $2.3898(8)$ |
| $\mathrm{N} 1-\mathrm{Na} 2^{\text {iii }}$ | $2.5450(10)$ |  |  |

Symmetry codes: (i) $-x,-y,-z$; (ii) $x,-y, z+\frac{1}{2}$; (iii) $-x-\frac{1}{2}, y+\frac{1}{2},-z-\frac{1}{2}$; (iv) $-x-\frac{1}{2}, y-\frac{1}{2},-z-\frac{1}{2} ;(\mathrm{v}) x,-y, z-\frac{1}{2}$.

The meta position within the O3/N2/C7-C10 nicotinate ligand was refined as $50 \% \mathrm{C} 10$ and $50 \% \mathrm{~N} 2$. Disordered atoms were treated with varying $U_{\text {iso }}$ values. All H atoms were observed in difference syntheses, and were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances of $0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: APEXII (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and POV-RAY (Cason, 2002); software used to prepare material for publication: SHELXL97.

The author is grateful to Monash University for the MGS and MIPRS financial grants.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DN2134). Services for accessing these data are described at the back of the journal.

## References

Batten, S. R. \& Harris, A. R. (2001). Acta Cryst. E57, m7-m8.
Bruker (2005). APEXII, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cason, C. J. (2002). POV-RAY. Persistence of Vision Raytracer Pty. Ltd, Victoria, Australia.
Huang, W., Xie, X., Cui, K., Gou, S. \& Li, Y. (2005). Inorg. Chim. Acta, 358, 875-884.
O'Neil, J. M. (2006). In The Merck Index, 14th ed. Rahway, NJ: Merck \& Co. Inc.
Prinzo, Z. W. \& Benoist, D. (2002). Proc. Nutr. Soc. 61, 251-257.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

